

LIMA: Evaluation and recent developments

- <u>B. Vié</u>, M. Taufour, Y. Seity, L. Ducongé, C. Lac
 <u>CNPM</u> Météo Eranco/CNPS Toulouso
- CNRM, Météo-France/CNRS, Toulouse

Motivations

Complex aerosols – clouds – precipitations interactions

LIMA: Liquid Ice Multiple Aerosols

2-moment, mixed-phase microphysical scheme

Droplets	Drops	Ice	Snow	Graupel	Hail
r _c N _c	r N _r	r _i N _i	r _s	r g	r _h
r: mass mixing ratio (kg.kg ⁻¹)			N: number conc. (#.kg ⁻¹)		

- Prognostic aerosol population
 - Interaction with clouds (nucleation ...)
 - Resolved and subgrid transport

Vié et al., 2016: LIMA (v1.0): a two-moment microphysical scheme driven by a multimodal population of cloud condensation and ice freezing nuclei, GMD, doi:10.5194/gmd-9-567-2016.

Current implementation of LIMA

LIMA was integrated in AROME (cycle 42 and 45+)

Recent developments

- Revised CCN activation properties, using the "κ-Köhler theory"
- Internal time-splitting technique
- Optimization of the splitted sedimentation scheme
- Improvements and bug fixes
- Aerosol initialization from MACC or MOCAGE data

In test for various situations

Evaluation for HyMeX deep convection

LIMA represents the cloud composition better than ICE3, but produces too large raindrops

Taufour et al., 2018: Evaluation of the two-moment scheme LIMA based on microphysical observations from the HyMeX campaign, QJRMS, DOI: 10.1002/qj.3283

Observed (disdrometers) and simulated rain characteristics, HyMeX IOP 16, 2012/10/26

Observed (disdrometers) rain μ-Dm relationship during HyMeX SOP 1

Improvements (under evaluation)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Rain diameter (mm) at level 1, HyMeX IOP 6, 03UTC 2012/09/24

LIMA: Evaluation for deep convection

Snow diagnostic number concentration

∇ Ns = C $\cdot \lambda^{x}$

LIMA: Evaluation for deep convection

HyMeX IOP 6: 12-h accumulated precipitation, 2012/09/24, 12UTC

LIMA: Evaluation for deep convection

HyMeX IOP 16: 24-h accumulated precipitation, 2012/10/27, 00UTC

3.8°E

4.8°F

5.8°

6.8°F

7.8°E

3.8°E

5.8°F

6.8°E

7.8°F

Two-moment microphysics for AROME

8.8°

3.8°E

4.8°E

6.8°E

7.8°E

5.8°E

15 5 1

LIMA: Evaluation for fog situations

LES of fog at SIRTA

- Droplets sedimentation
- Droplets deposition
- Account for cooling in the diagnostic supersaturation

LES of fog for Lanfex cases \rightarrow

0

Lanfex IOP 12: 2-m cloud water mixing ratio at 01UTC, 2015/10/02

0.09 0.18 0.27 0.36 0.45

Aerosol initialization: Bure, 2015/11/01

24h precipitation (mm)

LIMA (old version): 1-month scores

DPREVI/COMPAS 11-January-2017

20160316-20160417, 6-h accumulated precipitation, 10mm threshold

Conclusion & prospects

Thorough evaluation of LIMA (convection, fog, cyclones...)

Input from Karl-Ivar and Daniel will be interesting

Be careful when changing parameters !

Scheme efficiency

- Currently, 8 new prognostic variables result in +30% computing time
- Subgrid cloud fraction

Aerosol initialization from MACC and MOCAGE

To be continued...

2016 05 12, Low clouds in front of the Pyrénées