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ABSTRACT

At main international airports, air traffic safety and economic issues related to poor visibility conditions
are crucial. Meteorologists face the challenge of supplying airport authorities with accurate forecasts of fog
and cloud ceiling. These events are difficult to forecast because conditions evolve on short space and time
scales during their life cycle. To obtain accurate forecasts of fog and low clouds, the Code de Brouillard
à l’Echelle Locale (the local scale fog code)–Interactions between Soil, Biosphere, and Atmosphere
(COBEL–ISBA) local numerical forecast system was implemented at Charles de Gaulle International
Airport in Paris. However, even with dedicated observations and initialization, uncertainties remain in both
initial conditions and mesoscale forcings. A local ensemble prediction system (LEPS) has been designed
around the COBEL–ISBA numerical model and tested to assess the predictability of low visibility proce-
dures events, defined as a visibility less than 600 m and/or a ceiling below 60 m. This work describes and
evaluates a local ensemble strategy for the prediction of low visibility procedures. A Bayesian model
averaging method has been applied to calibrate the ensemble. The study shows that the use of LEPS for
specific local event prediction is well adapted and useful for low visibility prediction in the aeronautic
context. Moreover, a wide range of users, especially those with low cost–loss ratios, can expect economic
savings with the use of this probabilistic system.

1. Introduction

In the 1960s, studies by Lorenz (1963, 1969) revealed
the chaotic nature of the atmosphere. In the context of
numerical prediction, small errors in initial conditions
grow inexorably and affect the predictability of the
weather. Even with perfect numerical models, beyond a
certain limit in time, any single deterministic forecast
becomes useless. One way of circumventing this prob-
lem is to use ensemble forecasts. A benefit of ensemble
forecasting is that it helps forecasters to predict the
likelihood of unusual events such as fog. The use of
ensemble is a practical way of estimating the uncer-
tainty of a weather forecast. An ensemble forecast sys-
tem is composed of multiple individual numerical fore-
casts (members) generated from a set of different initial
conditions and/or different numerical configurations
(Leith 1974). Thus, probabilistic forecasts can be ob-

tained from the relative frequencies of events repre-
sented in the ensemble.

In the early 1990s, thanks to the increase in computer
power resources, an interest in ensemble forecasting
techniques developed and the production of probabi-
listic forecasts began to emerge. As a result, ensemble
prediction systems (EPS) are now widely used opera-
tionally in meteorological centers around the world
such as the National Centers for Environmental Pre-
diction (NCEP) in the United States (Toth and Kalnay
1993), the European Centre for Medium-Range
Weather Forecasts (ECMWF) in Europe (Buizza 1997;
Buizza and Palmer 1998), and the Meteorological Ser-
vice of Canada (MSC) in Canada (Houtekamer and
Lefaivre 1997). Techniques have been developed in
these centers, first for medium-range forecasts (3–7
days) and then later for short-range forecasts (12–72 h).
The originality of the present study lies in the fact that
a local ensemble forecast system is designed for the
very short-term forecasting (0–12 h) of specific condi-
tions such as fog and low ceiling conditions at a local
airport area (some preliminary work of Stessel et al.
2000). The local ensemble system is based on a 1D
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model forced with specific mesoscale forcings provided
by a 3D numerical weather prediction (NWP) model,
along with a 1D variational assimilation scheme forced
by dedicated on-site observations.

Despite all the improvements in horizontal and ver-
tical resolutions and the physics of 3D NWP models,
the prediction of fog and low clouds still remains a
challenge. Because fog events occur on relatively short
space and time scales, forecasters are faced with the
very difficult task of having to formulate space- or time-
specific skillful forecasts. Murphy (1991) discussed the
scientific and economic reasons for using probabilistic
forecasts for predicting rare and severe weather. In the
context of forecasting these events, forecasters have to
formulate judgments regarding the likelihood of the oc-
currence of the events of interest. Following this pro-
cedure, these forecasts are typically biased because
they mostly rely on the subjective judgment of forecast-
ers, thereby possessing an inherently probabilistic na-
ture. An explicit probabilistic forecast can provide a
fair estimation of the risk that an event occurs, and
users should be able to take advantage of this objective
forecast depending on their needs.

At major international airports, aviation forecasters
are concerned with rare events such as fog, and they
also forecast the complete life cycles of low clouds. In
practice at Charles de Gaulle International Airport in
Paris, adverse ceiling and visibility conditions (visibility
less than 600 m and/or ceiling below 60 m) lead to the
application of low visibility procedures (LVP). The
LVP application reduces the airport efficiency for take-
off/landing by a factor of 2, causing aircraft delays. For
these reasons, airport authorities require skillful local
predictions of LVP to efficiently manage air traffic in a
safe manner. As a part of the operational process, a
local (1D) approach was implemented in 2005 at
Charles de Gaulle airport to provide fog and low-cloud
life cycle forecasts (Bergot et al. 2005). The 1D Code de
Brouillard à l’Echelle Locale (COBEL) model (Bergot
1993) coupled with Interactions between Soil, Bio-
sphere, and Atmosphere (ISBA; Boone et al. 2000;
Boone 2000) is used together with a 1D variational as-
similation approach based on local observations.

The goal of this study is to develop a local ensemble
prediction system (LEPS) around COBEL–ISBA to es-
timate the likelihood of LVP occurrence at Charles de
Gaulle airport. An evaluation of the predictability of
local LVP conditions is obtained. Ensemble prediction
is usually performed by running 3D NWP models. In
this work, we propose a novel implementation of this
technique to a local framework. In the next sections, we
will describe LEPS from its construction to its valida-
tion. Section 2 will present the construction of the en-

sembles used in the study. Section 3 will describe the
Bayesian model averaging (BMA) calibration applied
to the ensembles to improve their reliability. Sections 4
and 5 are dedicated to the validation of LEPS. And
finally, section 6 summarizes the results and concludes
with LEPS’ ability in and efficiency for LVP prediction.

2. The deterministic local forecast system,
uncertainties, and sensitivity

a. The COBEL–ISBA numerical prediction system

In a local approach, a one-dimensional numerical
model is used to describe the evolution of the boundary
layer within a representative column of the atmo-
sphere. These 1D numerical modeling strategies seem
to be an interesting alternative for forecasting short
space and time scale meteorological events. The meso-
scale influences are considered by including mesoscale
forcings in the column during the simulations. Thus,
local approaches require two kinds of inputs: initial
conditions (mainly atmospheric temperature and hu-
midity profiles and soil temperature and water content
profiles) and mesoscale forcings (mainly advection pro-
files and cloud cover). Currently, local approaches are
used operationally to forecast the fog and low-cloud life
cycles at San Francisco (Clark 2002) and Charles de
Gaulle airports (Bergot et al. 2005). The same kind of
strategy has been tested on the U.S. northeastern coast
within the framework of the U.S. Federal Aviation Ad-
ministration ceiling and visibility project (Herzegh et al.
2002).

The focus of this work is on the numerical prediction
method used at Charles de Gaulle airport, which has
some specific characteristics.

1) The 1D high-resolution COBEL (local scale fog
code) atmospheric model (Bergot 1993; Bergot and
Guédalia 1994) is coupled with the multilayer sur-
face–vegetation–atmosphere transfer scheme ISBA
(Boone et al. 2000; Boone 2000).

2) Specific observations from a 30-m-high meteorologi-
cal tower (atmospheric temperature and humidity
and short and longwave radiation fluxes) and soil
measurements. These observations allow for a bet-
ter description of the vertical structure of the bound-
ary layer as well as the soil characteristics. They are
used in a local assimilation scheme to construct ini-
tial conditions based on a 1D variational (1DVAR)
assimilation scheme, together with a specific fog and
low-cloud initialization.

3) The mesoscale influences are integrated at the local
scale by taking the horizontal temperature and hu-
midity advections, the geostrophic wind, and the
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cloud cover from the Météo-France operational
NWP model Aladin (information on Aladin is avail-
able online at http://www.cnrm.meteo.fr/aladin/).

COBEL–ISBA inputs are the atmospheric tempera-
ture and humidity profiles from the 1DVAR system,
the geostrophic wind profiles, advection profiles, cloud
cover and the soil temperature and water content pro-
files. The model computes the atmospheric tempera-
ture and humidity profiles, the wind profiles, the tur-
bulent kinetic energy profile, and the atmospheric liq-
uid water profile, from which visibility is diagnosed.

b. Estimation of uncertainties and forecast
sensitivity

Despite the care in initializing COBEL–ISBA
through the 1DVAR assimilation of on-site observa-
tions together with a fog and low-cloud specific initial-
ization, uncertainties still remain with both the initial
conditions and the mesoscale forcings. These uncertain-
ties have been evaluated and quantified in a previous
paper (Roquelaure and Bergot 2007). The results are
summarized in the following subsections.

1) INPUT PARAMETERS

Mesoscale forcing uncertainty computation is based
on a spatiotemporal strategy, using the hypothesis that
uncertainty is correlated with the “intrinsic” variability
of the 3D NWP model Aladin. The model variability is
assessed in both space and time. The spatial variability
is evaluated by comparing the forecast over an area of
3 � 3 grid points. This area is representative of the
homogeneous surface conditions around the study area.
The temporal variability is evaluated by comparing four
Aladin runs (0000, 0600, 1200 and 1800 UTC) for the
same verification time. At the end of this two-step pro-
cedure, the variability in both space and time is used to
estimate the distribution of uncertainties on mesoscale
forcings.

Initial condition uncertainties are estimated from er-
rors on the observations for the soil and the lower part
of the atmosphere, where site observations are avail-
able (below 30 m). At higher elevations, output from
NWP model Aladin is used to provide both tempera-
ture and humidity profiles. As a consequence, uncer-
tainties are assessed with the spatiotemporal method-
ology described earlier for mesoscale forcings.

2) FORECAST SENSITIVITY SUMMARY

At the airport location, the influence of these uncer-
tainties on the COBEL–ISBA forecasts has been evalu-
ated during the 2002/03 winter season (Roquelaure and

Bergot 2007). The study has shown the time depen-
dency of forecast dispersion (Fig. 1). The influence of
uncertainties on initial conditions decreases during the
first hours of the simulation (0–6 h), whereas the dis-
persion created by mesoscale forcings becomes more
important in the second half of the simulation (6–12 h).
The cloud radiative impact on dispersion is felt during
the 12-h forecast period as well as during the low-cloud
initialization. A heat and humidity budget analysis ap-
plied on the guess fields has permitted the quantifica-
tion of the indirect impact of perturbations on the
variational data assimilation scheme. Perturbations
grow during the cycle and “feed” subsequent analyses
through the assimilation process. Errors in the model
initialization and forcing therefore propagate through-
out the assimilation–forecast cycle.

3. Construction of the ensembles

a. Overview on ensembles

Ensemble prediction techniques are designed to es-
timate the level of confidence in a particular forecast.
Theoretically, the goal is to make an explicit computa-
tion—through the Liouville equations—of the prob-
ability density function (pdf) of a forecast from the pdf
of the initial state (Ehrendorfer 1994). Ideally, multiple
perturbed initial states, derived from a reference initial
state, represent the pdf of the initial state pdf. However,
even in a local approach, multiple model integrations of
these perturbed states are costly and become rapidly
prohibitive if a complete description of the forecast pdf
is desired. The proposed forecast system has to be op-
erationally used and, consequently, a pure Monte Carlo

FIG. 1. Summary of the impact of uncertainty on fog and low-
cloud forecasts (from Roquelaure and Bergot 2007). For each
parameter type, the solid section of the arrow shows when the
dispersion is higher and the dashed section shows when the dis-
persion is weaker during the 12-h run.

3074 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 47



methodology cannot be applied. Therefore, the pdf has
to be approximated using a finite sample of forecast
scenarios. The sampling strategy is based on the per-
turbations of the initial conditions and mesoscale forc-
ings. Ensembles are built using the “perfect model”
assumption because the model physics are not per-
turbed. In a perfect ensemble system, forecast prob-
abilities are reliable because they match the observed
frequencies in a data sample. In practice, ensemble sys-
tems are not perfect mainly because of an imperfect
model and sampling problems. Consequently, ensemble
members are not equipropable, and the rough en-
semble probabilities are not reliable. A calibration
technique is used to circumvent this problem and in-
crease the ensemble reliability. The calibration corrects
the forecast probabilities using a statistical apprentice-
ship on a training dataset.

b. Ensemble approaches: Global versus
decomposed

Two methodologies of ensemble construction have
been tested in this study (Fig. 2). On the one hand, a
global ensemble has been designed. All members are
grouped into a single ensemble, and the calibration
method is applied jointly on all members. This ap-
proach allows the prediction of the LVP pdf and, there-
fore, provides a probability of LVP occurrence. Each
member has its own assimilation cycle.

On the other hand, a decomposed ensemble is also
evaluated following the results of the sensitivity study.
The members are split into four subensembles (or

blocks) following the parameter, which is perturbed,
and the calibration is applied within each subensemble
(Tables 1 and 2). Four subensembles are designed for
the mesoscale forcing, the initial conditions, the fog/
stratus initializations, and the cloud cover. This is a rea-
sonable approach because the dispersion of COBEL–
ISBA LVP forecasts depends upon the time of the fore-
cast as well as the parameter being considered. This
result suggests that a decomposed approach can pro-
vide the LVP pdf but also a forecast diagnosis following
each parameter and identify the physical drivers of a
given meteorological situation. The decomposed en-
semble could have the potential to indicate the sources
of uncertainty in the forecast. Each member also has its
own assimilation cycle.

4. Ensemble calibration

a. The Bayesian model averaging calibration

The calibration technique for the global LEPS and
decomposed ensemble prediction system (DEEPS)
subensembles follows the BMA method described in
Raftery et al. (2005). The main idea underlying the
BMA is that in any ensemble forecast there is a “best”
member, but we do not know which one it is. The BMA
is going to learn from a training dataset which members
are the most efficient for the prediction of any quantity
X (the occurrence of LVP in our case). Thanks to the
apprenticeship, the BMA method will assign a weight
to each member to improve the ensemble reliability.
Consequently, each member is clearly identified and

FIG. 2. Description of the ensemble construction: the global LEPS and DEEPS.
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has its own characteristics. If K members are available
in the training dataset XT, BMA takes into account that
all members learn about each member’s efficiency in
forecasting the variable X. The law of total probability
states that the forecast pdf p(X) is given by

p�X� � �
k�1

K

p�X |Mk�p�Mk |XT�, �1�

where p(X|Mk) is the forecast pdf based on member
Mk, and p(Mk |XT) is the posterior probability of mem-

ber Mk being correct on the training data. These pos-
terior probabilities have to sum up to one, �K

k�1

p(Mk |XT) � 1, and they can be interpreted as weights
[wk � p(Mk |XT)].

b. Estimation of BMA weight by maximum
likelihood: The EM algorithm

The BMA weights wk, k � 1, . . . , K, and the variance
�2 of the BMA pdf are estimated by maximum likeli-
hood from the training data (Fisher 1922). The maxi-
mum likelihood estimator is the value of the parameter
that maximizes the likelihood function, that is, the
value of the parameter under which the observed data
were most likely to have occurred.

The log-likelihood function, defined as l in Eq. (2), is
generally maximized instead of the likelihood function
itself for algebraic simplicity and to ensure numerical
stability. Assuming independence of forecast errors in
space s and time t, the general formulation for a vari-
able X is

l�w1, . . . , wk,�
2� � �

s,t
log �

k�1

K

wkpk�Xst | fst�. �2�

For LVP forecast, the formulation is easier; the pdf
pk(Xst | fst) is discrete and takes only two values: 1 for a

TABLE 1. The 18 mesoscale forcing members used in both the
30-member global and decomposed ensemble approaches [STD
means standard deviation following the variances of the uncer-
tainty distributions evaluated in Roquelaure and Bergot (2007),
ref means reference, and the word block is a synonym for suben-
semble in DEEPS].

Member

Ensembles

Global Decomposed

1—reference
member

Ref with Aladin cloud cover Included in
each block

2 Ref with clear sky Cloud cover
block

3 Ref with persistence Cloud cover
block

4 Ref � 1 STD on Aladin cloud
cover

Cloud cover
block

5 Ref � 1 STD on Aladin cloud
cover

Cloud cover
block

6 Ref � 1 STD on persistence Cloud cover
block

7 Ref � 1 STD on persistence Cloud cover
block

8 Ref � unperturbed advections MF block
9 Ref � 0.5 STD on humidity

advections
MF block

10 Ref � 0.5 STD on humidity
advections

MF block

11 Ref � 1 STD on humidity
advections

MF block

12 Ref � 1 STD on humidity
advections

MF block

13 Ref � 0.5 STD on temperature
advections

MF block

14 Ref � 0.5 STD on temperature
advections

MF block

15 Ref � 1 STD on temperature
advections

MF block

16 Ref � 1 STD on temperature
advections

MF block

17 Ref � 1 STD on geostrophic
wind

MF block

18 Ref � 1 STD on geostrophic
wind

MF block

Cloud cover subensemble:
7 members

MF subensemble: 12 members

TABLE 2. As in Table 1 but for the 12 initial condition members
used in both the 30-member global and decomposed ensemble
approaches.

Member

Ensembles

Global Decomposed

19 Ref � 1 STD on humidity atmospheric
profile

IC block

20 Ref � 1 STD on humidity atmospheric
profile

IC block

21 Ref � 1 STD on temperature
atmospheric profile

IC block

22 Ref � 1 STD on temperature
atmospheric profile

IC block

23 Ref � 1 STD on humidity soil profile IC block
24 Ref � 1 STD on humidity soil profile IC block
25 Ref � 1 STD on temperature soil

profile
IC block

26 Ref � 1 STD on temperature soil
profile

IC block

27 Cloud top � 1 grid point for fog and Fog/stratus
2 for stratus IC block

28 Cloud top � 1 grid point for fog and Fog/stratus
2 for stratus IC block

29 Ref � 1 STD on liquid water content Fog/stratus
IC block

30 Ref � 1 STD on liquid water content Fog/stratus
IC block

IC subensemble: 9 members
Fog/stratus subensemble: 5 members
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hit (LVP is observed and forecast, or LVP not observed
and not forecast) and 0 for a miss (LVP is not observed
and forecast, or LVP observed and not forecast). The
log-likelihood function is maximized by the expecta-
tion–maximization (EM) algorithm (Dempster et al.
1977; MacLachlan and Krishnan 1997).

The EM algorithm is iterative and alternates between
the E and M steps. It starts with an initial guess for the
weights. In the E step, the unobserved quantities zkt are
estimated from the guess; in the M step, the weights are
reestimated given the current values of the zkt. For the
BMA model given by Eq. (1), the E step is

zkt
� j�1� �

wk
� j �p� j ��Xt | fkt�

�
l�1

K

wl
� j �p� j ��Xt | flt�

, �3�

where the superscript j refers to the jth iteration of the
algorithm, and w( j)

k refers to wk at this iteration.
The M step is the estimation of wk using the current

estimates of z ( j�1)
kt as weights, and n is the number of

cases in training set,

wkt
� j�1� �

1
n �

t

zkt
� j�1�. �4�

c. Ensembles and verification dataset

The test ensemble configuration consists of 30-
member forecasts with perturbations on initial condi-
tions and mesoscale forcings (Tables 1 and 2). COBEL–
ISBA members have been obtained by running the
model at Charles de Gaulle airport during three winter
seasons, from 2002 to 2005. Runs of 12 h have been
performed with a 3-h data assimilation frequency
(about 1200 runs per winter). Observations have been
collected during the same period, and the validation of
model forecasts with observations was performed by
considering 30-min time intervals. The first two winters
are used for BMA weights computation, and the last
winter (2004/05) is kept for validation to preserve the
independence between the training and the verification
datasets.

The dispersion of LVP forecasts has been shown to
be dependent on forecast time (Roquelaure and Bergot
2007); consequently, BMA weights are also going to be
computed as a function of the forecast time. However,
LVP events are rare; the climatology frequency of LVP
events is about 6% during winter 2004/05 (the clima-
tology frequency of the training data is also 6% for
winters 2002/03 and 2003/04). Because of this low cli-
matological frequency, BMA weights have been com-
puted by regrouping 30-min training data into 3-h time

intervals to increase the number of observed LVP in
each time interval (0–3, 3–6, 6–9, and 9–12 h).

d. Scores for validation: The Brier score

One of the most common measures of accuracy for
verifying two-category probabilistic forecasts is the
Brier score (BS; Brier 1950). The BS is used to evaluate
an ensemble skill. It is defined as the mean square error
of the probability forecast:

BS �
1
N �

i�1

N

�pi � oi�
2, �5�

where N is the number of forecasts, pi is the forecast
probability, and oi is the verifying observation (1 if LVP
occurs and 0 if it does not). The Brier score can be
decomposed into three components: reliability, resolu-
tion, and uncertainty (Wilks 2006):

BS � BSrel � BSresol � BSunc , �6�

where

BSrel �
1
N �

k�1

T

nk�pk � ok�2, �7�

BSresol �
1
N �

k�1

T

nk�ok � o�2, and �8�

BSunc � o�1 � o �. �9�

When a sample of N forecasts has been divided in T
categories, each comprising nk forecasts of probability
pk, ok is the observed frequency of the forecast being
found in that category, and o is the observed frequency
in the whole sample.

The Brier skill score (BSS) can be defined as

BSS �
BSunc � BS

BSunc
. �10�

The Brier skill score is 1 for a perfect forecast and 0 for
a climatological forecast. Each component of the BS
decomposition is described in Table 3.

5. Results: Validation of the ensembles

a. Skill of the 30-member ensembles

The Brier score and its decomposition into reliability,
resolution, and uncertainty are analyzed to assess the
ensemble skill (Fig. 3). The uncertainty part of the
Brier score is a natural basis for comparisons with the
ensemble probability scores (Fig. 3a). The uncalibrated
ensemble provides a better forecast than the climatol-
ogy up to 5 h. Beyond this forecast time, it produces
higher errors than the climatology (Fig. 3a). For the
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decomposed approach (DEEPS), the Brier score is
slightly worse than the uncalibrated ensemble. Never-
theless, the forecast performance is better than the cli-
matology forecast up to 4 h. Conversely, the global ap-
proach (LEPS) provides a more suitable forecast than a
forecast based only on climatological information dur-
ing the 12-h forecast, and the mean improvement on the
Brier score is 20%. For very short term forecasts (be-
tween 0 and 3 h), the mean improvement on the Brier
score is 46% relative to the climatology (Table 6).

Most of the improvements on the Brier score as a
result of the calibration come from the reliability part
of the score (Fig. 3b). The BMA calibration is clearly
efficient in the global approach but not in the decom-
posed one. During the 12-h forecast, LEPS’ reliability is
improved by 46% on average by the BMA calibration,
whereas the calibration does not improve DEEPS’ re-
liability, which is on average worsened by 14%.

The calibration is applied to improve the ensemble
reliability and is not supposed to negatively influence
the ensemble resolution. Figure 3c confirms that reso-
lution is not affected by the calibration, and all the
ensembles have about the same resolution.

b. Influence of the BMA calibration on the
ensembles

Figure 3b has shown that calibration has successfully
improved reliability for LEPS, but it has failed for
DEEPS. BMA weights computed in both ensembles
are examined in the next subsections to understand
these different behaviors. The BMA method evaluates
the weights in light of the predictive information from
all members.

In two-category forecasts (yes–no, with two values, 1
or 0)—like here for LVP forecasts—the pdf of each
member is discrete instead of being continuous like for
more usual variables (e.g., Gaussian distribution for
temperature). For a classical variable (e.g., tempera-
ture), the BMA pdf is a weighted sum of all pdf mem-
bers; however, in binary cases such as LVP forecasts,
the distinction between member solutions becomes im-
possible when, for example, all members predict a fog.

The BMA method can only distinguish the relative fre-
quency of each member to give the correct forecasts for
the training data for each forecast period. Members
that give similar information are ignored and are typi-
cally assigned weights equal to zero in a well-sampled
ensemble with a wide range of parameters perturbed.
But the strengths of the BMA method are the efficiency
of the weight computation algorithm and its simplicity
in the case of binary forecasts. The BMA is not a com-
plex method in the case of LVP prediction. Because we
are predicting a binary variable (LVP or no LVP; 1 or
0), the BMA calibration problem is simplified and re-
duced to the computation of appropriate weights for
each ensemble member, so the BMA is a quite conve-
nient and efficient in this context.

However, the BMA calibration can be affected by
both “overfitting” the data and colinearity between
members in the training data (Wilson et al. 2007). Over-
fitting occurs when the training data sample is too
small; it damages the relationship between independent
data despite improving the fit relationship with the
training data. Colinearity of members occurs when en-
semble members are not independent in the training
data and leads to the failure of the ensemble sampling.
Having a too-small dataset induces colinearity, which
leads to de-weighting and to the exclusion of informa-
tion from members (Hamill 2007).

1) BMA WEIGHTS FOR THE GLOBAL LEPS

Figure 4a shows the BMA weights more than 5% in
the global approach. Only 8 of the 30 members have a
contribution more than 5% on at least one of the four
3-h periods. The BMA selects among the 30 members
the best members in the reliability meaning and split
the weight between these members.

It is also shown that weights evolve with the forecast
time. This result is in agreement with the conclusions of
our prior study on LVP forecast sensitivity: initial con-
dition members related to fog/stratus initialization pre-
vail (the maximum weight contribution is approxi-
mately 42%) during the first 6 h and decrease rapidly
afterward. The weight of the mesoscale forcing mem-

TABLE 3. The meaning of the reliability, the resolution, and the uncertainty components of the Brier score.

Component Meaning

Reliability
(BSrel)

The ability of the system to forecast accurate probabilities. Forecast probabilities have to match observed
frequencies. For example, an observed LVP frequency of 40% in a sample is expected when a 40% probability is
issued by the system. The reliability is negatively oriented like the Brier score (the lower the better).

Resolution
(BSresol)

The ability of the system to differentiate between the different categories, whatever the probabilities. The resolution
is positively oriented (the higher the better).

Uncertainty
(BSunc)

The variance of observations. It indicates the intrinsic difficulty of forecasting the event and does not depend on the
forecast system. Uncertainty is also the probability score of the sample climatology forecast.
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bers—especially humidity advections—increases during
the run and becomes dominant between 6 and 12 h (the
maximum weight contribution is approximately 52%).
Cloud cover members act throughout the 12-h run, and
initialization and mesoscale forcing members balance
each other during run.

Most of the weights are nil, revealing the colinearity
between some ensemble members. However, in the
global approach the BMA calibration still manages to
significantly improve the reliability (46% on average
during the 12-h forecast period). Thanks to the variety
of physical processes perturbed in the ensemble, some
members can have totally different trajectories around
the reference trajectory, and the BMA calibration is
efficient. Consequently, the ensemble is relatively well
sampled.

2) BMA WEIGHTS FOR DEEPS

Only the BMA weights supplied by the 12-member
mesoscale forcing subensemble are shown (Fig. 4b), but
conclusions are valid for the three other blocks. Almost
all members in the block have nonnegative weights and
contribute to the BMA weights, and the relative con-
tributions of the members are lower than those in
LEPS. Seven out of the 12 members have a weight
more than 5%. The BMA assigns a weight to each
member of the block, but they remain quasi-constant in
time. This behavior is a result of the colinearity of mem-
bers, in that each subensemble is composed of members
with the same physical parameter perturbed; however,
the members are still too dependent. Consequently,
weights are lower (the weight contribution is less than
30%) than the main weights in the LEPS calibration,
and they are also quasi constant during the run.

The training data sample is too small to recalibrate
the four subensembles together to balance parameter
block effects, like in the global LEPS when initial con-
ditions and mesoscale forcings balance each other.
Consequently, the calibration is applied within each
block and afterward the blocks are assumed equiprob-
able. Each subensemble suffers from too much depen-
dency of its inner members and, therefore, calibration
in all the subensembles fails to improve the basic skill of
the uncalibrated ensemble.

Individual scores of each subensemble are analyzed
in Fig. 5 to help to understand each block’s contribu-
tion. First, the mesoscale forcing block presents a Brier
score comparable with the climatology uncertainty and
the uncalibrated ensemble Brier score between 3 and
12 h. All other Brier scores are higher than the clima-
tology uncertainty past the third forecast hour (Fig. 5a).
Second, resolutions vary significantly after 2 h of simu-

FIG. 3. (a) Brier score, (b) reliability, and (c) resolution of the
30-member ensembles for winter season 2004/05.
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lation. Depending on the perturbed parameter (or per-
turbed physical process), a block may capture the event
because of the decomposition strategy. Consequently,
subensembles have less potential regarding the resolu-
tion than the global LEPS (Fig. 5c). Resolutions in sub-
ensembles are lower than in the LEPS, within a range
of 30%.

c. Ensemble sampling sensitivity

To test this sampling representativity, a 54-member
ensemble was built by adding perturbations up to two
standard deviations (Tables 4 and 5) to the original
30-member ensemble. Tables 6–8 summarize the skill
of the global LEPS for LVP prediction at Charles de
Gaulle airport. Mean scores for the 12-h forecast period
as well as for the first 3 h of the forecast are presented
because high quality, very short term forecast are of
particular interest to airport management.

Overall, the 30- and 54-member LEPS have the same
skill. As a result, there is almost no improvement on the
Brier score between both LEPS (Table 6)—either for
very short periods or for during the 12-h forecast pe-
riod. However, improvements appear with the decom-
position of the Brier score.

First, for the very short term forecast (0–3 h), the
calibration in the 54-member ensemble leads to a 41%
improvement in reliability, whereas the calibration in
the 30-member ensemble improves reliability by 25%.
This result suggests a better sampling of the 54-member
ensemble. The uncertainties seem to be more represen-
tative in the 54-member ensemble than in the 30-
member ensemble, and the calibration leads to better
reliability. Actually, the uncertainties of the atmo-
spheric profiles were underestimated in the 30-member
ensemble; it has been observed with the better results
of the initial conditions subensembles for the 54-

member DEEPS compared to the 30-member DEEPS
(not shown).

Second, the calibration leads to a better resolution in
the 54-member ensemble, especially for longer forecast
times (9–12 h) when there is an improvement of 18%.
Notice that the calibration has almost no impact (2%)
on the resolution in the 30-member ensemble. This im-
pact of the BMA calibration on the resolution of the
54-member ensemble could be explained by the fact
that the dataset is too small for the validation of the
54-member ensemble. The same dataset is used to vali-
date both the 30- and 54-member ensembles. If this
dataset is sufficient to validate the 30-member en-
semble, the dataset appears to be inappropriate for the
validation of the 54-member ensemble. The larger the
ensemble is, the larger the validation data needs to be.
However, for both calibrated ensembles and longer-
term forecasts (9–12 h), the 54-member LEPS improves
by 29% relative to the 30-member LEPS. This result
also confirms a better sampling representativeness in
the 54-member ensemble. As a result, the 54-member
ensemble is able to capture more events than the 30-
member ensemble.

Because of its better sampling representativeness,
the 54-member ensemble will be analyzed in the next
sections to demonstrate its operational capabilities and
its benefits relative to deterministic forecasts. Despite
the negative consequences of using a small training data
sample, the global LEPS ensemble methodology has
been successful, and the BMA calibration has improved
the basic skill of the uncalibrated ensembles. However,
because we are dealing with the prediction of a rare
event, the robustness of the results will have to be con-
firmed in the future using larger data samples—
especially for longer forecast times (6–12 h) when few
forecasts are issued with high probabilities.

FIG. 4. BMA weights for both 30-member ensembles: (a) the global ensemble and (b) the mesoscale forcing block of the
decomposed ensemble. Only the members with a weight contribution more than 0.05 (5%) are shown.
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6. LEPS operational characteristics and economic
value

a. The 54-member LEPS versus the reference
deterministic forecast

In this subsection, the 54-member LEPS is compared
to the reference deterministic forecast to quantify the
advantage of using an ensemble probabilistic forecast.
Figure 6 compares the Brier score, the reliability and
the resolution of the 54-member LEPS, and the refer-
ence deterministic forecast. The Brier score is not par-
ticularly adapted for the evaluation of deterministic
forecasts; however, a deterministic forecast can be
viewed as a probabilistic forecast with only two catego-
ries: 0 and 100%. The interpretation of the scores
should take into account the different nature between
deterministic and probabilistic forecasts. The Brier
score results indicate that the 54-member LEPS is bet-
ter than the reference by 8% on average during the
12-h forecast period (Fig. 6a). For very short-term fore-
casts (0–3 h), the improvement is 20% on average.

Figure 6b (reliability) and Fig. 6c (resolution) have to
be analyzed together because of the different nature
between deterministic and probabilistic forecasts. Be-

FIG. 5. (a) Brier score, (b) reliability, and (c) resolution of the
four DEEPS subensembles for winter season 2004–2005 [fog/
stratus, cloud cover, initial condition (IC), and mesoscale forcing
(MF) blocks].

TABLE 4. As in Table 1 but for the 54-member ensembles LEPS
and DEEPS.

Member

Ensembles

Global
Decomposed

(blocks)

1—reference
member

Ref with Aladin cloud cover Included in
each block

2–7 Same as members 2–7 in
Table 1

Cloud cover
block

8 Ref � 2 STD on Aladin cloud
cover

Cloud cover
block

9 Ref � 2 STD on Aladin cloud
cover

Cloud cover
block

10 Ref � 2 STD on persistence Cloud cover
block

11 Ref � 2 STD on persistence Cloud cover
block

12–22 Same as members 8–18 in
Table 1

MF block

23 Ref � 2 STD on humidity
advections

MF block

24 Ref � 2 STD on humidity
advections

MF block

25 Ref � 2 STD on temperature
advections

MF block

26 Ref � 2 STD on temperature
advections

MF block

Cloud cover subensemble: 11
members

MF subensemble:18 members
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cause the ensemble is designed to forecast the LVP
likelihood, the ensemble probabilistic system should
have a better resolution than deterministic forecasts to
be valuable. This prediction is shown in Fig. 6c, and
LEPS resolution is superior to the reference by 93% on
average for the 12-h forecast period. Consequently,
LEPS is able to detect significantly more cases than the
reference deterministic forecast, especially for longer-
term forecasts (9–12 h) in which the mean improvement
is 189%. However, because of their probabilistic na-
ture, LEPS forecasts are less reliable than the reference
forecast, with reliability worsening 210% on average
during the 12-h forecast period. First, this result can be
explained by the fact that LEPS forecasts more fog
cases and therefore has a higher risk of producing false
alarms. Second, a good reliability score is obtained
when all the probability categories match the forecast
probabilities. This requirement is easier to reach for the
deterministic forecast, leading to a better reliability
than LEPS. However, the improvement in resolution
dominates the overall score, showing that 54-member

LEPS forecasts have the potential to forecast more
cases than deterministic forecasts.

b. The LVP forecast efficiency: Pseudo relative
operating characteristics curve

The pseudo ROC curves provide an efficient way of
representing the quality of dichotomous, categorical,

TABLE 7. Summary of the results for the reliability part of the
Brier score: percentage of improvement/damage [computed as
(Xensemble � Xbaseline)/Xbaseline, where X represents the reliability
score from the Brier score’s decomposition] between ensembles.
Negative values correspond to an improvement and positive val-
ues correspond to damage to the quality of the studied ensemble.

Reliability

Percentage of
improvement/damage (%)

Between
0 and 3 h

All forecast
periods

between 0
and 12 h

30-member LEPS vs 30-member
uncalibrated ensemble

�25 �46

54-member LEPS vs 54-member
uncalibrated ensemble

�41 �39

54-member uncalibrated vs
30-member uncalibrated

�6 �8

54-member LEPS vs 30-member
LEPS

�8 �10

TABLE 5. As in Table 2 but for the 54-member ensembles LEPS
and DEEPS.

Member

Ensembles

Global Decomposed

27–36 Same as members 19–26 in Table 2 IC block
37 Ref � 2 STD on humidity

atmospheric profile
IC block

38 Ref � STD on temperature
atmospheric profile

IC block

39 Ref � 2 STD on temperature
atmospheric profile

IC block

40 Ref � STD on humidity soil profile IC block
41 Ref � 2 STD on humidity soil

profile
IC block

42 Ref � STD on temperature soil
profile

IC block

43 Ref � 2 STD on temperature soil
profile

IC block

44–48 Same as members 27–30 in Table 2 Fog/stratus
IC block

49 Cloud top � 1 vertical grid point Fog/stratus
IC block

50 Cloud top � 1 vertical grid point Fog/stratus
IC block

51 Cloud top � 2 vertical grid point Fog/stratus
IC block

52 Cloud top � 2 vertical grid point Fog/stratus
IC block

53 Cloud base � 1 vertical grid point Fog/stratus
IC block

54 Cloud base � 2 vertical grid point Fog/stratus
IC block

IC subensemble: 17 members
Fog/stratus subensemble: 11 members

TABLE 6. Summary of the results for the Brier score: percentage
of improvement/damage [computed as (BSensemble � BSbaseline)/
BSbaseline] between ensembles or an ensemble and the uncer-
tainty. Negative values correspond to an improvement and posi-
tive values correspond to damage to the quality of the studied
ensemble.

Brier score

Percentage of
improvement/damage (%)

Between
0 and 3 h

All forecast
periods
between

0 and 12 h

30-member uncalibrated ensemble
vs uncertainty

�41 �10

54-member uncalibrated ensemble
vs uncertainty

�42 �13

30-member LEPS vs uncertainty �46 �20
54-member LEPS vs uncertainty �46 �20
30-member LEPS vs 30-member

uncalibrated ensemble
�6 �10

54-member LEPS vs 54-member
uncalibrated ensemble

�4 �7

54-member uncalibrated vs
30-member uncalibrated

�2 3

54-member LEPS vs 30-member
LEPS

0 0
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and probabilistic forecasts. The method is based on ra-
tios that measure the proportions of LVP events and
nonevents for which warnings were provided. It evalu-
ates the skill of the forecast system by comparing the hit
rate (HR) and the pseudo false-alarm rate (pseudo
FAR) of LVP events for different thresholds.

For this study, four thresholds have been chosen: P 	
90%, P 	 50%, P 	 20%, and P 	 0%. The pseudo
FAR is computed as the ratio of forecast and unob-
served cases to LVP forecast cases. This calculation
removes the influence of the “no–no good forecasts”
(no LVP forecast and no LVP observed), which mostly
dominates the data sample for rare events and hides the
true skill of the LVP forecast system. The HR is com-
puted as the ratio of forecast and observed cases to
LVP observed cases. When defining HR and pseudo
FAR (also called false-alarm ratio) in Eqs. (11) and
(12), a is the number of observed and forecast events, b
is the number of not observed and forecast events, and
c is the number of observed and not forecast events:

HR �
a

a � c
and �11�

pseudo FAR �
b

a � b
. �12�

Figure 7 also shows the advantage of using probabi-
listic forecasts instead of the reference deterministic
forecasts, which lie on or below the curves for both the
54-member uncalibrated ensemble and the 54-member
LEPS, at any forecast time. Users can chose between
two options according to their needs. Either users de-
cide to take protective measures for low probability
thresholds (like P 	 20%)—this is possible because the
probabilistic forecast has higher detection capabilities

FIG. 6. (a) Brier score, (b) reliability, and (c) resolution com-
parisons between the 54-member global LEPS calibrated and un-
calibrated ensembles and the reference deterministic forecast for
winter season 2004/05.

TABLE 8. As in Table 7 but for the resolution part of the Brier
score.

Resolution

Percentage of
improvement/damage (%)

All forecast
periods
between

0 and 12 h
From 9
to 12 h

30-member LEPS vs 30-member
uncalibrated ensemble

2 �2

54-member LEPS vs 54-member
uncalibrated ensemble

6 18

54-member uncalibrated vs
30-member uncalibrated

3 7

54-member LEPS vs 30-member
LEPS

7 29
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than the deterministic one but with more false alarms—
or users can implement measures only when they have
confidence in the forecast with high probability thresh-
olds (like P 	 90%). This strategy is also possible be-
cause the probabilistic forecasts can provide high prob-
abilities with significant hit rates but also provide fewer
false alarms than the deterministic forecast between 0
and 6 h of the forecast. In a representative ensemble
(with an adequate sampling), the mean solution of the
ensemble eliminates the unpredictable components in
the ensemble and preserves the predictable compo-
nents. The mean ensemble solution is the ensemble
mean value of ceiling; the visibility aspect of the LVP
variable is represented by a value of ceiling of 0 m.
Figure 7 shows that the ensemble mean always has a
smaller HR but also a much smaller pseudo FAR than
the reference forecast. Therefore, the ensemble mean is
a more reliable deterministic forecast than the refer-
ence forecast. The pseudo ROC curves display the

mean statistics of LEPS during the 2004/05 winter sea-
son for the eight daily runs (0000, 0300, 0600, 0900,
1200, 1500, 1800, and 2100 UTC). The statistics are pre-
sented in Fig. 7 according to four forecast time periods
(0–3, 3–6, 6–9, and 9–12 h) on the pseudo ROC curves.

c. LEPS economic value: A simple cost–loss
decision model

A simple cost–loss model can be applied to this con-
text of local LVP probabilistic forecasts (Zhu et al.
2002; Richardson 2003). Consider a user or decision
maker whose activities are sensitive to LVP forecasts. If
the event occurs and the user has not taken any pre-
ventive action, then the user suffers a financial loss L,
or the user could take action at a cost C, that could
protect against this potential loss. It is shown in the
appendix that the relative economic value is calculated
as follows:

FIG. 7. Pseudo ROC curve during the 12-h forecast for the 54-member uncalibrated ensemble, the 54-member
LEPS, the mean (HR and pseudo FAR for the mean cloud base height result) of the 54-member uncalibrated
ensemble, and the reference deterministic forecast for (a) 0–3, (b) 3–6, (c) 6–9, and (d) 9–12 h for winter season
2004/05. Four probability thresholds are considered: P 	 90%, P 	 50%, P 	 20%, and P 	 0%. The mean
ensemble solution is the ensemble mean value of ceiling; the visibility aspect of the LVP variable is represented by
a value of ceiling of 0 m.
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V��� �
min��, o� � �p�pseudo FAR� � o�1 � ��HR � o

min��, o� � o�
,

�13�

where 
 is the cost–loss ratio of any user, o � a � c is
the fraction when LVP occurs (climatology), and p �
a � b is the fraction of forecast LVP events.

Consequently, the economic value depends on the
user cost–loss ratio. Figure 8 shows a wide range of
users can benefit from the 54-member LEPS; however,
the maximum saving is expected for users with low cost–
loss ratios and with the lowest probability threshold.

The highest economic value is reached for users
whose cost–loss ratio equals the climatology frequency
of LVP events (about 0.06 or 6%)—between 0–3 h sav-
ings are up to 78% (threshold P 	 0%) and decrease to
reach 58% during the 9–12 h forecast period. The mean
ensemble forecast has a better skill and thus a better
economic value than the highest probability threshold
(P 	 90%), especially during the second part of simu-
lation (between 6–12 h).

In the aeronautic context, losses are likely be much

larger than the cost of taking protective precautions, so
these users have an economic value (V) associated with
low cost–loss ratios (
). These users take advantage of
higher HR and can tolerate larger pseudo FAR. LEPS
is worthwhile for users in the aeronautic sector who
could rely on this probabilistic forecast system to man-
age the airport traffic and take appropriate actions ac-
cording to the LVP likelihood (managing flight delays
or cancellations; increasing number of staff, mostly for
safety considerations; and increasing time and space
interval security for takeoff and landing, among oth-
ers).

7. Conclusions

The use of a local forecast system is well adapted for
the prediction of events with small space and time
scales such as low-cloud ceiling and visibility (Bergot
2007). Predictability of this type of sensitive events is
not at all straightforward, and ensemble prediction was
shown to be able to provide valuable estimates of the
forecast skill as well as supplying confidence indices on

FIG. 8. Relative economic value during the 12-h forecast for the mean 54-member ensemble result, the P 	 90%
and P 	 0% thresholds, and the reference member between (a) 0–3, (b) 3–6, (c) 6–9, and (d) 9–12 h for winter
season 2004/05.
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the forecasts. Probabilistic forecasts can help authori-
ties in their daily decision-making responsibilities to-
ward maintaining a high level of air traffic safety and
cost efficiency. One way commonly used to produce
probabilistic forecasts is through an ensemble ap-
proach. Two strategies have been tested at Charles de
Gaulle International Airport for the prediction of LVP
events: the global LEPS approach and the decomposed
approach (DEEPS). For LEPS, all members are
grouped into a single ensemble, and the calibration
method is applied jointly on all members. For DEEPS,
the members are split into “physically consistent” sub-
ensembles, and the calibration is applied in each sub-
ensemble. As with the LEPS, DEEPS provides the
LVP pdf, but in addition the sources of uncertainty in
the forecast can in principle be diagnosed by identifying
the physical drivers of a particular event.

However, the decomposed EPS was not conclusive.
The BMA calibration has not improved the reliability
in the decomposed approach, with values remaining
close to those of the uncalibrated ensemble. Increasing
the amplitude of the perturbations and the ensemble
size has led to improvements in reliability and resolu-
tion for DEEPS. But, these improvements were not
sufficient to reach the 30-member LEPS skill.

The lack of training and verification data has been
prejudicial in the decomposed approach. The decom-
posed approach, with the subensemble strategy, clearly
requires more data to induce a forecast time depen-
dency of the BMA weights within each subensemble
and therefore permitting a useful recalibration of the
four subensembles. The main weakness of the DEEPS
is that the subensembles suffer from too much depen-
dency of its inner members, and therefore the calibra-
tion in all the subensembles fails to improve the basic
skill of the uncalibrated ensemble. Thus, the construc-
tion of the subensembles has to be reviewed and recon-
sidered to improve the skill of DEEPS.

On the other hand, the global LEPS is successful
thanks to the BMA calibration. The BMA weights
evolve with the forecast time, with initial condition
members prevailing between 0 and 6 h and mesoscale
forcing members prevailing between 6 and 12 h. A bal-
ance between the ensemble members is reached, which
improves LEPS’ reliability. LEPS’ resolution is equiva-
lent to the uncalibrated ensemble resolution because
resolution is not affected by the calibration method in
the 30-member ensemble. However, the calibration has
influenced the resolution of the 54-member ensemble
because of a too-small dataset for an appropriate vali-
dation of this ensemble.

Results show that the resolution is improved by the
increase of the ensemble size. The ensemble sampling

in the 54-member ensemble has a better representation
of the uncertainties than the 30-member ensemble.
Consequently, the 54-member LEPS has a higher reso-
lution for longer-term forecasts than the 30-member
LEPS. As the forecast time increases, the ensemble
spreads out more and LVP events are forecast more
frequently but with low probabilities. After 3 h of simu-
lation, few LVP cases are forecast with probabilities
more than 50%. Therefore, the calibration method be-
comes less efficient for high probability categories than
small probability categories, which is a consequence of
a lack of data. The calibration and the validation data
samples are too small; small samples lead to the over-
fitting of the training data and colinearity between en-
semble members, which affect the ensemble by de-
weighting and excluding information from members.

For very short term forecasts (0–3 h), the improve-
ment in LEPS reliability is much better in the 54-
member LEPS than in the 30-member LEPS. This re-
sult also confirms a better sampling of the uncertainties
in the 54-member ensemble. The DEEPS suben-
sembles analysis has been very useful in understanding
the sampling representativeness point.

The advantage of using the LEPS probabilistic fore-
casts rather than the reference deterministic forecasts
has been shown in the improvement in the resolution.
LEPS has a much higher resolution than the reference
deterministic forecast, thus it can detect more LVP
cases.

Current operational LVP forecasts are accurate up to
3 h. Beyond this forecast horizon, the use of these op-
erational forecasts leads to too many false alarms and
they become useless (Bergot 2007). LEPS extends the
limit of LVP predictability up to 12 h. The system is
particularly reliable for very short term forecasts (0–3
h). Its ability remains significant up to 6 h for both
reliability and resolution, and its potential for LVP de-
tection is significant up to 12 h.

The quality of LEPS forecasts is very appreciable;
the probabilistic information is reliable and comple-
ments the single deterministic forecast by adding a con-
fidence index on the reference run. At all forecast
times, complementary information from LEPS can be
obtained depending on the user’s interests. A simple
cost–loss decision model has been applied to the 54-
member LEPS, and it is shown that users with low cost–
loss ratios can expect significant benefits from the sys-
tem. For these users, it is important to avoid failings.
They can tolerate more false alarms because the cost of
taking protection measures is much smaller than the
cost of losses caused by the occurrence of the event.
Users can expect a maximum savings up to 78%, 60%,
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58%, and 57% for the forecast time periods of 0–3, 3–6,
6–9, and 9–12 h, respectively.

This local probabilistic system has been designed
with an operational purpose in mind. In addition to
LEPS’ forecast skill, some motivating strengths regard-
ing more practical operational considerations have to
be highlighted.

One-dimensional models are easy and relatively in-
expensive to run. LEPS’ results can rapidly be obtained
in an operational environment on a personal computer
(PC). The fact that numerous 1D forecasts can be ob-
tained in a timely manner is essential because high-
frequency runs are required for insightful very short-
term probabilistic forecasts of LVP.

The methodology can be easily adapted to other air-
ports. The strategy employed consists of three steps: the
evaluation of the distributions of the uncertainty
sources, the sampling of the ensemble, and the BMA
calibration.

The BMA calibration procedure is efficient. New
calibration weights have to be computed for each new
location, and site observations are required for these
computations. On-site, dedicated observations are also
highly recommended for the 1D model initialization to
obtain a finer vertical description of the boundary layer
profiles and accurate forecasts (Bergot et al. 2005). The
adaptability of the local ensemble prediction and its
computational efficiency will always be an advantage
compared to the important computational resources re-
quired to run 3D numerical weather prediction models
for the local prediction purpose.

We have demonstrated that the LEPS has great fore-
cast skill for short and very short-term forecasts of LVP
conditions at Charles de Gaulle International Airport.
Consequently, the system is well adapted and easy to
run for this operational purpose.
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APPENDIX

Simple Cost–Loss Decision Model

A simple cost–loss model can be applied to the
present context of local LVP probabilistic forecasts
(Zhu et al. 2002; Richardson 2003). Consider a user or
decision maker whose activities are sensitive to LVP
forecasts. If the event occurs and the user has not taken

any preventive action, then the user suffers a financial
loss L. Instead, the user could take action at a cost C
that would protect against this potential loss. The costs
and losses of all combinations of action and outcomes
are described in Tables A1 and A2. The goal of the user
is to minimize overall expense by deciding on which
situations to protect against.

In a large number of cases, o � a � c is the fraction
when LVP occurs in the sample (climatology), and p �
a � b is the fraction of LVP events forecast. If the user
always takes preventative action, then the cost will be C
on every occasion and the average expense (per situa-
tion) will be

Eprotect � C.

Alternatively, if the user never takes preventive ac-
tions, then the loss will only be incurred when LVP
occurs and the average expense in this case will be

Eloss � oL.

Assuming that the user knows only the climatological
frequency of LVP o, the optimal strategy is either al-
ways protect or never protect, depending on the strat-
egy that gives the lower overall expenses. This is a base-
line against which improvements gained by using the
forecast information (reference run, ensemble mean,
and probability thresholds) can be compared and evalu-
ated. This is the climatological expense:

Eclimatology � min�C, oL�.

Another useful reference point is provided by the
expense associated with perfect forecast information,
which is obtained when the user only protects if LVP
occurs,

Eperfect � oC.

TABLE A2. Contingency for deterministic forecast of specified
event of a set of cases showing fraction of occasions for each
combination of forecast and outcome.

Event forecast

Outcome

Yes No

Yes a b
No c d

TABLE A1. Costs and losses associated with different actions
and outcomes in the cost–loss model.

Action taken

Outcome

Yes No

Yes C C
No L 0
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The average expense of a deterministic forecast or a
probabilistic forecast (using a probability threshold) is
obtained by multiplying the corresponding cells in
Tables A1 and A2,

Eforecast � aC � bC � cL.

The difference between Eclimatology and Eforecast mea-
sures the economic savings of the user when the fore-
cast system is used relative to only having climatologi-
cal information. The relative economic value (V) is de-
fined by comparing this savings with the maximum
possible savings that can be made with perfect deter-
ministic forecasts:

V �
Eclimatology � Eforecast

Eclimatology � Eperfect
.

Replacing each expense by expression, the relative
economic value is

V��� �
min��, o� � �p�pseudo FAR� � o�1 � ��HR � o

min��, o� � o�
,

where 
 is the cost–loss ratio of any user, HR is the hit
rate and pseudo FAR is the pseudo false-alarm rate.
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