Future Euro-Mediterranean climate sensitivity to anthropogenic aerosols

Thomas Drugé PhD student

UMR3589, CNRM, Météo-France/CNRS, Toulouse, France

Supervised by: Pierre Nabat, Marc Mallet and Samuel Somot

Wednesday 10th April 2019

Why study aerosols over the Mediterranean?

-> Crossroads of various aerosols (natural + anthropogenic sources)

Aerosols = Important impact on radiative budget and climate

Aerosol effects on surface temperature

Aerosols direct radiative forcing (average 2003-2009, surface, all sky)	SW DRF (W.m ⁻²)		
Europe	- 14 .7		
Mediterranean Sea	- 20.9		
Northern Africa	- 19.4		

(Nabat et al., 2015a)

(Nabat et al., 2015a)

Use of climate scenarios:

CMIP5 (RCP, Representative Concentration Pathway) / CMIP6 (SSP, Shared Socioeconomic Pathway)

Aerosol evolution not taken into account by most EURO-CORDEX and MED-CORDEX models.

Objectives:

- Study the aerosols evolution between the past and future period
- Quantify the future Euro-Mediterranean climate sensitivity to anthropogenic aerosols

Methodology:

- · Not coupled with ocean
- · Forced by CNRM-ESM2 (Séférian et al., 2019)

TACTIC (Michou et al., 2015; Nabat et al., 2015)

- Prognostic aerosol scheme
- 7 aerosol types : Dust, sea-salt, organic carbon, black carbon, sulfate, ammonium and nitrate (*Drugé et al., 2019*)
- Interactions with SW and LW radiation (direct aerosol effect)
- Cloud albedo indirect effect for sulfate, sea-salt, organic matter and nitrate (first indirect aerosol effect): not discussed in this presentation
 - -> Simplified scheme to keep a low numerical cost

Three simulations (use of CMIP6 forcing)

	HIST	SSP585	SSP585avg
Anthropogenic aerosol emissions	CMIP6 historical	SSP 5-8.5 scenario	CMIP6 historical (average)
Period	1971-2000	2021-2050	2021-2050

Results = summer (June, July and August)

II - Aerosol evolution between the past (1971-2000) and future (2021-2050) period

III - Future Mediterranean climate sensitivity to anthropogenic aerosols

IV - Conclusion and discussion

Total AOD

I - Introduction

Total AOD

– > Separation by aerosol type

Natural aerosols

Natural aerosols

Evolution causes

SSP585 (2021/2050) - HIST (1971/2000)

Europe: Total AOD decrease (- 0.10) due to the sufate decrease (- 0.13) and the nitrate compensation (+ 0.03)

Africa: Total AOD increase on West (+ 0.10) and East (+ 0.25) Africa due to the dust increase (wind rise) and the nitrate contribution

Aerosol evolution causes?

Evolutions causes

SSP585 (2021/2050) — HIST (1971/2000)

Europe: Total AOD decrease (- 0.10) due to the sufate decrease (- 0.13) and the nitrate compensation (+ 0.03)

Africa: Total AOD increase on West (+ 0.10) and East (+ 0.25) Africa due to the dust increase (wind rise) and the nitrate contribution

Aerosol evolution causes?

due to:
SO₂ emissions
decline (Europe)

Nitrate increase

due to:

sulfate decrease

(Europe)

(Africa)

dust increase

Sulfate decrease

Short wave direct radiative forcing (W m⁻²)

HIST (1971-2000) SSP585 (2021-2050)

-2

-10

Euro	ope	Sulfate + Organics	Nitrate + Ammonium	Black carbon	Total	
All sky	ТОА	- 4.3	- 1.3	0.5	- 5.1	
	TOA –	- 0.9	- 3.1	0.2	- 3.8	
	C C	- 5.5	- 1.6	- 1.5	- 8.6	125
	Surface	- 1.2	- 4.0	- 0.9	- 6.1	+ 2.5
			#			
Less effect More effect -> Consistent with previous results			30°W 15°W 0° 15°E 30°E 45°E 60°E 45°N 40°N 35°N 30°N 25°N 25°N			

II - Aerosol evolution between the past (1971-2000) and future (2021-2050) period

III - Future Mediterranean climate sensitivity to anthropogenic aerosols

IV - Conclusion and discussion

Anthropogenic aerosols impact on the future Europe climate SSP585 - SSP585avg

High regional temperature variability

• Central Europe: temperature increase of about 0.3°C due to anthropogenic aerosols drop (direct aerosol effect)

 Two special cases: western France (temperature decrease of about – 0.1°C) and Iberian Peninsula (temperature increase of about 0.2°C)

II - Aerosol evolution between the past (1971-2000) and future (2021-2050) period

III - Future Mediterranean climate sensitivity to anthropogenic aerosols

IV - Conclusion and discussion

Conclusion

Aerosols evolution

I - Introduction

SSP585 - HIST

Strong AOD sulfate decline (-0.13) over Europe partly offset by nitrate aerosols (+0.03)

> During the summer (June, *July and August)*

Future mediterranean climate sensitivity to anthropogenic aerosols

SSP585 - SSP585avg

- <u>Direct aerosol effect:</u> temperature increase over Central Europe (+0.3°C) due to sulfate decrease
 - > Over Central Europe, the aerosols are responsible of about 10% of the warming
- <u>Semi-direct aerosol effect:</u> temperature increase over the Iberian Peninsula (+ 0.2°C) and temperature decrease over western France (- 0.1°C)

Discussion

- Use of a single scenario (SSP 5-8.5)
- Model not coupled to the ocean (ocean feedbacks not considered)
- Not taking into account secondary aerosol indirect effect

Thank you for your attention!

Wind speed (JJA)

SSP585 - HIST

