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Ensemble seasonal forecasts during boreal winter suffer from insufficient3

spread and systematic errors. In this study we suggest a new stochastic dy-4

namics method to address both issues at a time. Our technique relies on ran-5

dom additive corrections of initial tendency error estimates of the atmospheric6

component of the CNRM-CM5.1 global climate model, using ERA-Interim7

as a reference over a 1979-2010 hindcast period. The random method improves8

deterministic scores for 500-hPa geopotential height forecasts over the North-9

ern Hemisphere extratropics (NH Z500), and increases the ensemble spread.10

An optimal method consisting in drawing the error corrections within the11

current month of the hindcast period illustrates the high potential of future12

improvements, with NH Z500 anomaly correlation reaching 0.65 and North13

Atlantic Oscillation index correlation 0.71 with ERA-Interim. These substan-14

tial improvements using current year corrections pave the way for future fore-15

casting methods using classification criteria on the correction population.16

Accepted for publication in Geophysical Research Letters. Copyright 201217

American Geophysical Union. Further reproduction or electronic distribution18

is not permitted.19
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1. Introduction

Seasonal prediction using coupled general circulation models (GCMs) has been an ac-20

tive field of research over the last two decades. International research efforts such as21

the European Commission-funded DEMETER [Palmer et al., 2004] and ENSEMBLES22

[Weisheimer et al., 2009; Doblas-Reyes et al., 2009] projects as well as the APEC Climate23

Center-sponsored CliPAS project [Wang et al., 2009] illustrated the potential of state-of-24

the-art numerical climate models in forecasting temperature and geopotential, and to a25

lesser extent precipitation, at a seasonal timescale. Predictability is generally higher over26

the Tropics, but models show positive skill with respect to climatology over some midlat-27

itudinal regions. Most model ensembles suffer from systematic errors and lack of spread.28

Multi-model techniques pooling together predictions from several models address both29

issues : some systematic errors are cancelled out provided that individual model errors30

are different, and reliability is improved [Hagedorn et al., 2005]. However, the success of31

a multi-model ensemble technique relies mainly on the quality of the individual models32

used. In addition, if a model has insufficient spread and a large prediction error over a33

given region, it will lead the multi-model towards a wrong prediction.34

In recent years a variety of stochastic perturbation methods has been implemented in35

atmospheric models to account for model error, both for short-term ensemble predictions36

and monthly-to-seasonal forecasts using these models as the atmospheric component of37

an earth-system model. Buizza et al. [1999] introduced random perturbations of model38

physical tendencies into the ECMWF ensemble prediction system. An additional scheme39

called Stochastic Kinetic Energy Backscatter (SKEB) algorithm is used by ECMWF to40
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scatter kinetic energy dissipated by the model at the sub-grid scale back to larger scales41

[Shutts , 2005], and Berner et al. [2008] highlights the reduction of systematic error and42

improvements of most deterministic and probabilistic skill scores over differents regions43

at a seasonal time scale due to this algorithm. SKEB is used alongside a perturbed44

parameters scheme described in Bowler et al. [2008] in the Met Office’s GloSea4 seasonal45

forecast model [Arribas et al., 2011]. Similar stochastic physics schemes are also used46

for medium-range forecasts in the Canadian ensemble prediction system [Charron et al.,47

2010].48

In the present study, an alternative stochastic perturbation technique is applied to49

the CNRM-CM5.1 GCM [Voldoire et al., 2012] for seasonal forecasting. Predictions50

are stochastically corrected by adding randomly drawn initial tendency residuals to the51

temperature, specific humidity and vorticity fields in the prognostic equations of the52

ARPEGE-Climat v5.2 atmospheric model component. The initial tendency residuals are53

estimated using a nudging technique as described in Kaas et al. [1999] and Guldberg et al.54

[2005]. Several past studies such as Yang and Anderson [1999], Barreiro and Chang [2004]55

and Guldberg et al. [2005] have suggested that correcting systematic errors in atmospheric56

or coupled ocean-atmosphere GCMs reduce model bias with some impact on seasonal57

prediction skill. However, Guldberg et al. [2005] found that systematic error correction58

in a previous version of ARPEGE-Climat showed no improvement over the Tropics and59

the Northern Hemisphere. The originality of the method presented here relies on the60

stochasticity of the error corrections. A more detailed description of the stochastic dy-61

namics technique is given in section 2, and results are shown in section 3. They illustrate62
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the significant gain in seasonal forecasting skill during Northern Hemisphere winter. An63

upper limit for possible future improvements using this method is also shown.64

2. Stochastic Dynamics Method

The stochastic dynamics method implemented in the ARPEGE-Climat v5.2 atmo-65

spheric model for seasonal forecasts is an additive stochastic perturbation of three prog-66

nostic ARPEGE variables X : temperature, specific humidity and vorticity, following67

equation 1. M(X(t), t) represents the evolution of variable X due to the initial ARPEGE-68

Climat model formulation, and δXt is the stochastic perturbation.69

X(t+ ∆t) = X(t) + M(X(t), t) + δXt (1)

Our method derives from Guldberg et al. [2005] and consists in using the nudging tech-70

nique to estimate initial tendency errors of ARPEGE-Climat v5.2 and then perturbing a71

seasonal forecast with random initial tendency error corrections drawn within these es-72

timates. The stochastic dynamics method follows three steps. The first step is to run73

the CNRM-CM5.1 model during 32 years (1979-2010), nudging it towards the ECMWF74

ERA-Interim reanalysis data [Dee et al., 2011]. ERA-Interim data is re-interpolated on75

the ARPEGE-Climat reduced gaussian grid. Prognostic variables temperature, specific76

humidity and vorticity are relaxed towards the ERA-Interim fields with relaxation times77

of a day for temperature and specific humidity and 6 hours for vorticity. This run pro-78

vides initial conditions on November 1st 1979 to 2010 (for boreal winter forecasts) for79

each component of CNRM-CM5.1.80
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In a second step, a four-member ensemble is implemented for each November-December-81

January-February season (NDJF) of the 1979-2010 period. This second run is relaxed more82

weakly towards ERA-Interim and started with initial conditions from the first run, thus83

reducing spin-up effects due to differences between ERA-Interim and model climatology.84

Relaxation times are selected close to one month for temperature and specific humidity,85

and ten days for vorticity. A vertical profile for relaxation coefficients is introduced in the86

five lowest levels of the model so as to tune relaxation down to zero and avoid inconsis-87

tencies at the surface. Differences between ERA-Interim fields and each member for the88

three relaxed variables are stored daily. The opposite of these fields, thus corresponding89

to model corrections towards ERA-Interim, make up the {δX} population from which the90

perturbations are drawn in forecast mode.91

The third step consists in the actual retrospective forecast, started with initial condi-92

tions each November 1st from the first run and with perturbations drawn from the {δX}93

population designed in the second step of the method. In this study perturbations were94

drawn within the corresponding calendar month, meaning that {δX} was in fact separated95

in four bins for NDJF coherent with the forecast lead-time. A different δX was drawn96

for each ensemble member every six hours of the forecast. Perturbations for temperature,97

specific humidity and vorticity are drawn together, and correspond to an error correction98

for a given day of the second step re-forecast. This ensures that perturbations are coherent99

between the three corrected fields, and avoids partially cancelling out the effects of one100

correction with that of another field.101
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3. Experiments and Results

Three sets of seasonal re-forecasts of December to February (DJF) 1979-80 to 2010-11102

were run with 15 ensemble members:103

1. The reference seasonal forecast ensemble (REF) was perturbed with random δX104

drawn from the initial tendency error correction population only at the initial time step.105

2. A random stochastic dynamics ensemble (SD RAND) was perturbed with δXt at106

each time step.107

3. An optimal stochastic dynamics ensemble (SD OPT) was perturbed with δXt at108

each time step drawn in the same month and year as the actual forecast.109

The SD OPT experiment cannot be implemented for operational forecasts, since initial110

tendency errors can only be estimated for a set of hindcasts. Perturbations are consistent111

with the errors the model makes in a given month. Therefore, results for SD OPT de-112

termine the upper limit for scores using this stochastic perturbation technique, provided113

that corrections are relevant to the model initial tendency errors at a given time.114

The impact of the stochastic dynamics method on DJF 500 hPa geopotential height115

(Z500) bias over the Northern Hemisphere is shown in figure 1. The negative bias over116

the polar region is reduced in SD RAND, and Z500 bias gradients over the northern Pacific117

and northern Atlantic are less pronounced. SD OPT biases are very similar to SD RAND118

(not shown). Figure 2 shows anomaly correlation coefficients (ACC) for DJF Z500 over the119

Northern Hemisphere extra-tropics (30 to 75 degrees North) for each forecast ensemble.120

The random stochastic dynamics method improves anomaly correlation for 22 out of121

32 seasons. The associated binomial test shows that this improvement is statistically122
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significant (p = 0.025). While the REF ensemble yields correlation values lower than 0.2123

for 15 seasons, correlation remains lower than this threshold for only 8 seasons with the124

SD RAND ensemble. SD OPT anomaly correlation scores reach over 0.6 for 19 seasons125

and are lower than 0.4 for only 4 seasons. This suggests that an appropriate set of126

perturbations in a given season could lead to significant improvements in forecasting skill.127

Mean ACC values for different variables and regions were calculated for the three en-128

sembles and are listed in table 1. Mean ACC is considerably improved with stochastic129

dynamics for Z500 over the Northern Hemisphere extra-tropics, in coherence with results130

shown earlier. Results over the Tropics for 2-meter temperature (T2m) and precipitation131

and the Niño 3.4 region for T2m exhibit no significant impact of the stochastic dynamics132

method on mean ACC scores for SD RAND, whereas SD OPT improves precipitation and133

T2m scores over the Tropics.134

Improvement over the Northern Hemisphere extra-tropics is also found when looking at135

monthly root mean square error (RMSE) of the forecasts over the 1979-2010 time period.136

Figure 3 illustrates the improvement of the spread-to-skill ratio of the forecast ensemble137

for NH Z500. While RMSE is reduced by over 15 meters in months 3 and 4 of the forecast,138

the SD RAND ensemble also has a higher spread during the first two months, and similar139

spread in the following two months. The stochastic dynamics method therefore improves140

model error and dispersion, as intended. SD OPT has the same spread as SD RAND,141

with an ensemble spread larger than the RMSE after a 2-month lead.142

Skill was further assessed over the Euro-Atlantic region by investigating model perfor-143

mance in forecasting the North Atlantic Oscillation (NAO). Following a method similar144
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to Doblas-Reyes et al. [2003], the NAO is defined as the leading empirical orthogonal145

function (EOF) of December to February monthly Z500 ERA-Interim data from 1979 to146

2010 over the region 20◦N-80◦N and 80◦W-40◦E. Model NAO indexes are calculated by147

projecting monthly grid point anomalies for each member onto this EOF. Forecasts and148

ERA-Interim verification series are standardized in cross-validation mode. The introduc-149

tion of stochastic dynamics has little impact on the ensemble spread of the forecasts at a150

seasonal time scale. The SD RAND ensemble has slightly higher skill than REF in fore-151

casting the NAO index, with a correlation of 0.36 versus 0.32 between the ensemble mean152

index and the reference ERA-Interim index. The SD OPT ensemble exhibits significant153

improvement with a correlation of 0.71 with ERA-Interim.154

Probabilistic skill was evaluated with a ranked probability score (RPS) for tercile predic-155

tion defined following Toth et al. [2003] as the average of Brier Scores for a given variable156

remaining below the climatological terciles. The RPS ranges between 0 (perfect forecast)157

and 1 and consists in a sum over the 32 seasons of quadratic distances in probabilistic158

space between forecasts and observations (worth 0 or 1 whether the event occurs or not159

a given season). Reliability, resolution [Murphy , 1973] and RPS scores are calculated as160

in Batté and Déqué [2011] for each grid point over land and averaged over the region of161

interest. Results for T2m terciles over NH land grid points and NH Z500 are shown in162

table 2. A ranked probability skill score is defined as RPSS = 1−RPS/RPSc where RPSc163

is the climatology RPS. Similar scores are found for ensembles REF and SD RAND, which164

outperform climatological forecasts over the region, yielding positive RPSS values. The165

improvement in scores noted for SD OPT is mainly due to an increase in resolution, which166
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evaluates the ability of the model to separate events that have different probabilities of167

occurence.168

4. Conclusion and Discussion

This study presents an original technique for stochastic perturbations combining the169

assets of random perturbation and systematic error correction in coupled models used for170

seasonal forecasts. Re-forecasts of DJF 1979-2010 using this method with the CNRM-171

CM5.1 GCM show enhanced performance over the Northern Hemisphere for 500hPa172

geopotential height, with similar skill over the Tropics. RMSE and anomaly correlation173

coefficients for Z500 show that random stochastic perturbations as designed in our study174

can enhance scores and improve the model spread-to-skill ratio. These improvements are175

triggered by a reduced seasonal bias consistent with previous studies that corrected aver-176

age errors, and an enhanced ensemble spread consistent with other stochastic techniques.177

Results with an ensemble using optimal corrections drawn from the current forecast178

month suggest room for improvement in seasonal forecasting skill, provided that correc-179

tions are drawn from a population that is representative of the common initial tendency180

errors of the current season. Correlation coefficients for the NAO index with the optimal181

ensemble reach 0.7 and therefore illustrate the potential of such a technique, as long as182

an appropriate classification of the correction population is found. Further work should183

therefore focus on exploring classification criteria for the perturbation population based on184

the state of the ocean or the atmosphere, using analogues to classify perturbations accord-185

ing to tropical sea surface temperature or weather regimes as in D’Andrea and Vautard186

[2000]. It is worth mentioning that although RMSE was further reduced with optimal per-187
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turbations, ensemble spread remained very close to the random perturbation ensemble.188

A concise study of probabilistic skill showed that ranked probability score improvements189

with the optimal ensemble relied mainly on increased resolution. Lack of improvement in190

reliability could be corrected by multi-model forecasting. Given the current impact of our191

method on model spread, other stochastic perturbations with a longer time scale could192

be included in the model. Future experiments will study the impact of the perturbation193

frequencies and drawing several successive chronological corrections on model spread and194

skill.195
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D R A F T May 7, 2012, 9:25am D R A F T



X - 14 BATTE AND DEQUE: STOCHASTIC METHOD FOR SEASONAL PREDICTIONS

R. Hagedorn, M. Hoshen, N. Keenlyside, M. Latif, A. Lazar, E. Maisonnave, V. Mar-252

letto, A. Morse, B. Orfila, P. Rogel, J.-M. Terres, and M. Thomson, Development253

of a European multimodel ensemble system for seasonal-to-interannual prediction254

(DEMETER), Bull. Am. Meteorol. Soc., 85, 853–872, 2004.255

Shutts, G., A kinetic energy backscatter algorithm for use in ensemble prediction systems,256

Q. J. R. Meteorolog. Soc., 131, 3079–3102, doi:10.1256/qj.04.106, 2005.257

Toth, Z., O. Talagrand, G. Candille, and Y. Zhu, Probability and ensemble forecasts, in258

Forecast Verification, A Practitioner’s Guide in Atmospheric Science, edited by I. Joliffe259

and D. Stephenson, pp. 137–163, John Wiley & Sons Ltd, 2003.260

Voldoire, A., E. Sanchez-Gomez, D. Salas y Mélia, B. Decharme, C. Cassou, S. Sénési,261
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Figure 1. DJF NH Z500 mean bias (in meters) for ensembles REF (left) and SD RAND

(right).

Table 1. Mean ACC values for REF, SD RAND and SD OPT. Statistical significance of

differences between the SD ensembles and REF are tested using a binomial test for season ACC

scores. Bold scores are significantly better than REF at a 95% level.

Region Variable REF SD RAND SD OPT
NH a Z500 0.25 0.37 0.65
Tropics b Precipitation 0.45 0.45 0.52
Tropics T2m 0.47 0.47 0.51
Niño 3.4 c T2m 0.83 0.81 0.82

a 30◦N-75◦N

b 23◦N-23◦S

c 170◦W-120◦W and 5◦N-5◦S
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Figure 2. DJF NH Z500 anomaly correlation coefficient for ensembles REF, SD RAND and

SD OPT.

Table 2. Reliability, resolution, RPS and RPSS values for ERA-Interim climatology, REF,

SD RAND and SD OPT for NH T2m (land grid points only) and Z500. Bold RPS values indicate

scores significantly better than REF at a 95% level using a binomial test for season RPS scores.

Ensemble Rel Res RPS RPSS
NH T2m (over land)
Climatology 0. 0. 0.222 -
REF 0.095 0.099 0.218 0.019
SD RAND 0.094 0.100 0.217 0.026
SD OPT 0.094 0.112 0.204 0.080
NH Z500
Climatology 0. 0. 0.222 -
REF 0.090 0.095 0.217 0.022
SD RAND 0.088 0.097 0.213 0.042
SD OPT 0.091 0.120 0.193 0.131
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Figure 3. Evolution of monthly root mean square error (full lines) and ensemble spread

(dashed lines) for NH Z500 with forecasts REF, SD RAND and SD OPT.
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